Post-editing machine translation as a student project, exemplified by literary fiction
DOI:
https://doi.org/10.33910/2686-830X-2024-6-3-172-183Keywords:
post-editing of machine translation, translation automation, literary translation, translation errors, translator training, Russian to English translationAbstract
The article examines post-editing machine translation (PEMT) as a key relevant skill that needs to be nurtured in aspiring translators amid the rapid development of translation automation technologies. Following a brief historical background of machine translation (MT), from the very first mid-20th century experiments to neural networks, the author turns to literary fiction in the context of PEMT tasks for students. Taking into consideration that literary texts in particular abound in the main MT “pitfalls” — words with emotional and evaluative connotations, idiomatic expressions, emulation of natural colloquial speech, and more — fiction is capable of providing rich illustrative material for identifying, systematizing, and correcting MT errors. The author cites a personal case study, wherein third-year BA students majoring in Translation and Translation Studies successfully performed PEMT on Nadezhda Teffi’s short story, The Princess’s Ruby (1905), which had been automatically translated from Russian into American English. While working with the Phrase translation platform, students encountered various MT errors, the classification of which is presented in this study. Apart from a few isolated issues with the transliteration of proper names, this article identifies three major groups of reoccurring errors in the literary text’s MT: punctuation errors (55 instances), lexical and semantic errors (67 instances), and grammatical errors (13 instances). The author accompanies these errors with corrections proposed by the students during PEMT and, in some cases, offers alternatives. The study repeatedly stresses that the recurrence of the aforementioned errors is tied to the unique features of literary fiction, which can justify including PEMT of literary texts into the roster of practical tasks for translator training.
References
ИСТОЧНИКИ
Тэффи, Н. А. (1998) Собрание сочинений: в 5 т. Т. 2. Неживой зверь. М.: Лаком, 382 с.
Phrase TMS: The leading translation management system. (2024) [Online]. Available at: https://phrase.com/platform/tms/ (accessed 29.06.2024).
СЛОВАРИ
Кузнецов, С. А. (ред.). (1998) Большой толковый словарь русского языка. СПб.: Норинт, 1534 с.
Corpus of Contemporary American English. (2024) [Online]. Available at: https://www.english-corpora.org/coca/ (accessed 29.06.2024).
Merriam-Webster Dictionary. (2024) [Online]. Available at: https://www.merriam-webster.com/ (accessed 26.06.2024).
ЛИТЕРАТУРА
Беляева, Л. Н. (2019) Машинный перевод в работе переводчика: практический аспект. Вестник ПНИПУ. Проблемы языкознания и педагогики, № 2, с. 8–20. https://doi.org/10.15593/2224-9389/2019.2.1
Гальперин, И. Р. (2007) Текст как объект лингвистического исследования. 5-е изд. М.: КомКнига, 144 с.
Жданова, Т. А., Ефремова, Г. А. (2017) Автоматизация перевода: прошлое и настоящее. Вестник Хабаровского государственного университета экономики и права, № 1 (87), с. 46–50.
Иванько, А. Ф., Иванько, М. А., Колесникова, О. Д. (2019) Информационные нейронные сети. Научное обозрение. Технические науки, № 4, с. 11–16. https://doi.org/10.17513/srts.1250
История машинного перевода: от гипотез Лейбница и Декарта — до мобильных приложений и облачных сервисов. (2019) PROMT. [Электронный ресурс]. URL: https://www.promt.ru/press/blog/istoriya-mashinnogo-perevoda-ot-gipotez-leybnitsa-i-dekarta-do-mobilnykh-prilozheniy-i-oblachnykh-se/ (дата обращения 20.06.2024).
Камшилова, О. Н., Беляева, Л. Н. (2023) Машинный перевод в эпоху цифровизации: новые практики, процедуры и ресурсы. Terra Linguistica, т. 14, № 1, с. 41–56. https://doi.org/10.18721/JHSS.14105
Маматкасимова, В. А. (2022) Общие принципы машинного перевода. Вестник науки и образования, № 6-2 (126), с. 23–25.
Морозова, Т. В. (2020) Жанр рекламы в функционально-стилистическом освещении. Ученые записки Новгородского государственного университета, № 4 (29), с. 1–4. https://doi.org/10.34680/2411-7951.2020.4(29).12
Степаненко, А., Каменщиков, С., Суетин, Н. (2020) Искусственный интеллект в современном искусстве. Инновационный центр «Сколково». [Электронный ресурс]. URL: https://sk.ru/news/iskusstvennyy-intellekt-v-sovremennom-iskusstve/ (дата обращения 22.06.2024).
Ушакова, А. О. (2022) Постредактирование машинного перевода технического текста. Евразийский гуманитарный журнал, № 3, с. 69–76.
Чакырова, Ю. И. (2013) Постредактирование в транслатологической парадигме. Вестник ПНИПУ. Проблемы языкознания и педагогики, № 8, с. 137–144.
Шукаева, Ж. Ж., Шидловская, И. А. (2022) Особенности машинного перевода немецких фразеологизмов на русский язык. В кн.: Филологические чтения. Материалы Всероссийской научно-практической конференции с международным участием. Оренбург: Изд-во Оренбургского государственного университета, с. 246–251. [Электронный ресурс]. URL: https://elibrary.ru/download/elibrary_48654711_61289346.pdf (дата обращения 22.06.2024).
Ясаревская, О. Н. (2017) Модели статистического машинного перевода. XXI век: итоги прошлого и проблемы настоящего плюс, № 5-6 (39-40), с. 171–176.
Hutchins, W. J. (1999) Warren Weaver memorandum, July 1949. MT News International, no. 22, pp. 5–6.
Rule-based machine translation. (2024) Machine translate. [Online]. Available at: https://machinetranslate.org/rule-based-machine-translation (accessed 21.06.2024).
What are AI hallucinations? (2024) IBM. [Online]. Available at: https://www.ibm.com/topics/ai-hallucinations (accessed 22.06.2024).
SOURCES
Phrase TMS: The leading translation management system. [Online]. Available at: https://phrase.com/platform/tms/ (accessed 29.06.2024). (In English)
Teffi, N. A. (1998) Sobranie sochinenij: v 5 t. T. 2. Nezhivoj zver’ [Complete works: In 5 vols. Vol. 2. Unliving beast]. Moscow: Lakom Publ., 382 p. (In Russian)
DICTIONARIES
Corpus of Contemporary American English. (2024) [Online]. Available at: https://www.english-corpora.org/coca/ (accessed 29.06.2024). (In English)
Kuznetsov, S. A. (ed.). Bol’shoj tolkovyj slovar’ russkogo yazyka [A large explanatory dictionary of the Russian language]. Saint Petersburg: Norint Publ., 1534 p. (In Russian)
Merriam-Webster Dictionary. (2024) [Online]. Available at: https://www.merriam-webster.com/ (accessed 26.06.2024). (In English)
REFERENCES
Belyaeva, L. N. (2019) Mashinnyj perevod v rabote perevodchika: prakticheskij aspekt [Machine translation in a translator workflow: Practical view]. Vestnik PNIPU. Problemy yazykoznaniya i pedagogiki — PNRPU Linguistics and Pedagogy Bulletin, no. 2, pp. 8–20. https://doi.org/10.15593/2224-9389/2019.2.1 (In Russian)
Chakyrova, Yu. I. (2013) Postredaktirovanie v translatologicheskoj paradigme [Post-editing in the translation studies paradigm]. Vestnik PNIPU. Problemy yazykoznaniya i pedagogiki — PNRPU Linguistics and Pedagogy Bulletin, no. 8, pp. 137–144. (In Russian)
Galperin, I. R. (2007) Tekst kak ob’ekt lingvisticheskogo issledovaniya [Text as an object of linguistic study]. 5th ed. Moscow: KomKniga Publ., 144 p. (In Russian)
Hutchins, W. J. (1999) Warren Weaver memorandum, July 1949. MT News International, no. 22, pp. 5–6. (In English)
Istoriya mashinnogo perevoda: ot gipotez Lejbnitsa i Dekarta — do mobil’nykh prilozhenij i oblachnykh servisov [History of machine translation: From hypotheses by Leibniz and Descartes to mobile applications and cloud services]. (2019) PROMT. [Online]. Available at: https://www.promt.ru/press/blog/istoriya-mashinnogo-perevoda-ot-gipotez-leybnitsa-i-dekarta-do-mobilnykh-prilozheniy-i-oblachnykh-se/ (accessed 20.06.2024). (In Russian)
Ivanko, A. F., Ivanko, M. A., Kolesnikova, O. D. (2019) Informatsionnye nejronnye seti [Information neural networks]. Nauchnoe obozrenie. Tekhnicheskie nauki — Scientific Review. Technical Sciences, no. 4, pp. 11–16. https://doi.org/10.17513/srts.1250 (In Russian)
Kamshilova, O. N., Belyaeva, L. N. (2023) Mashinnyj perevod v epokhu tsifrovizatsii: novye praktiki, protsedury i resursy [Machine translation in the age of digitalization: New practices, procedures and resources]. Terra Linguistica, vol. 14, no. 1, pp. 41–56. https://doi.org/10.18721/JHSS.14105 (In Russian)
Mamatkasimova, V. A. (2022) Obshchie printsipy mashinnogo perevoda [General principles of machine translation]. Vestnik nauki i obrazovaniya — Bulletin of Science and Education, no. 6-2 (126), pp. 23–25. (In Russian)
Morozova, T. V. (2020) Zhanr reklamy v funktsional’no-stilisticheskom osveshchenii [The genre of advertising in the functionally-stylistic lighting]. Uchenye zapiski Novgorodskogo gosudarstvennogo universiteta — Memoirs of NovSU, no. 4 (29), pp. 1–4. https://doi.org/10.34680/2411-7951.2020.4(29).12 (In Russian)
Rule-based machine translation. (2024) Machine translate. [Online]. Available at: https://machinetranslate.org/rule-based-machine-translation (accessed 21.06.2024). (In English)
Shukaeva, Zh. Zh., Shidlovskaya, I. A. (2022) Osobennosti mashinnogo perevoda nemetskikh frazeologizmov na russkij yazyk [Specifics of machine translation of German idioms into Russian]. In: Filologicheskie chteniya. Materialy Vserossijskoj nauchno-prakticheskoj konferentsii s mezhdunarodnym uchastiem [Philological readings. Proceedings of All-Russian scientific conference with international participation]. Orenburg: Orenburg State University Publ., pp. 246–251. [Online]. Available at: https://elibrary.ru/download/elibrary_48654711_61289346. pdf (accessed 22.06.2024). (In Russian)
Stepanenko, A., Kamen’shchikov, S., Suetin, N. (2020) Iskusstvennyj intellekt v sovremennom iskusstve [Artificial intelligence in modern art]. Innovatsionnyj tsentr Skolkovo. [Online]. Available at: https://sk.ru/news/iskusstvennyy-intellekt-v-sovremennom-iskusstve/ (accessed 22.06.2024). (In Russian)
Ushakova, A. O. (2022) Postredaktirovanie mashinnogo perevoda tekhnicheskogo teksta [Technical text machine translation post-editing]. Evrazijskij gumanitarnyj zhurnal — Eurasian Humanitarian Journal, no. 3, pp. 69–76. (In Russian)
What are AI hallucinations? (2024) IBM. [Online]. Available at: https://www.ibm.com/topics/ai-hallucinations (accessed 22.06.2024). (In English)
Yasarevskaya, O. N. (2017) Modeli statisticheskogo mashinnogo perevoda [Revisiting statistical machine translation models]. XXI vek: itogi proshlogo i problemy nastoyashchego plyus — XXI Century: Resumes of the Past and Challenges of the Present plus, no. 5-6 (39-40), pp. 171–176. (In Russian)
Zhdanova, T. A., Efremova, G. A. (2017) Avtomatizatsiya perevoda: proshloe i nastoyashchee [Translation automation: Past and present]. Vestnik Khabarovskogo gosudarstvennogo universiteta ekonomiki i prava — Bulletin of Khabarovsk State University of Economics and Law, no. 1 (87), pp. 46–50. (In Russian)
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Kseniia V. Bogdanova

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The work is provided under the terms of the Public Offer and of Creative Commons public license Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This license allows an unlimited number of persons to reproduce and share the Licensed Material in all media and formats. Any use of the Licensed Material shall contain an identification of its Creator(s) and must be for non-commercial purposes only.